Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation.
نویسندگان
چکیده
We have replaced part of the mouse homeogene Otx2 coding region with the E. coli lacZ coding sequence, thus creating a null allele of Otx2. By 9.5 dpc, homozygous mutant embryos are characterized by the absence of forebrain and midbrain regions. From the early to midstreak stages, endomesodermal cells expressing lacZ fail to be properly localized anteriorly. In the ectodermal layer, lacZ transcription is progressively extinguished, being barely detectable by the late streak stage. These data suggest that Otx2 expression in endomesoderm and ectoderm is required for anterior neuroectoderm specification. In gastrulating heterozygous embryos, a post-transcriptional repression acts on lacZ transcripts in the ectoderm, but not in the external layer, suggesting that different post-transcriptional mechanisms control Otx2 expression in both layers.
منابع مشابه
Forebrain and midbrain development requires epiblast-restricted Otx2 translational control mediated by its 3' UTR.
Otx genes play an important role in brain development. Previous mouse models suggested that the untranslated regions (UTRs) of Otx2 mRNA may contain regulatory element(s) required for its post-transcriptional control in epiblast and neuroectoderm. In order to study this, we have perturbed the 3' UTR of Otx2 by inserting a small fragment of DNA from the lambda phage. Otx2(lambda) mutants exhibit...
متن کاملThe role of Otx2 in organizing the anterior patterning in mouse.
Understanding the molecular mechanism controlling induction and maintenance of signals required for specifying anterior territory (forebrain and midbrain) of the central nervous system is a major task of molecular embryology. The current view indicates that in mouse, early specification of the anterior patterning is established at the beginning of gastrulation by the anterior visceral endoderm,...
متن کاملOTD/OTX2 functional equivalence depends on 5' and 3' UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation.
How gene activity is translated into phenotype and how it can modify morphogenetic pathways is of central importance when studying the evolution of regulatory control mechanisms. Previous studies in mouse have suggested that, despite the homeodomain-restricted homology, Drosophila orthodenticle (otd) and murine Otx1 genes share functional equivalence and that translation of Otx2 mRNA in epiblas...
متن کاملVisceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation.
Otx1 and Otx2, two murine homologs of the Drosophila orthodenticle (otd) gene, contribute to brain morphogenesis. In particular Otx1 null mice are viable and show spontaneous epileptic seizures and abnormalities affecting the dorsal telencephalic cortex. Otx2 null mice die early in development and fail in specification of the rostral neuroectoderm and proper gastrulation. In order to determine ...
متن کاملRegulation of Otx2 expression and its functions in mouse forebrain and midbrain.
Otx2 expression in the forebrain and midbrain was found to be regulated by two distinct enhancers (FM and FM2) located at 75 kb 5' upstream and 115 kb 3' downstream. The activities of these two enhancers were absent in anterior neuroectoderm earlier than E8.0; however, at E9.5 their regions of activity spanned the entire mesencephalon and diencephalon with their caudal limits at the boundary wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 121 10 شماره
صفحات -
تاریخ انتشار 1995